Gene Expression Trees in Blood Cell Development
نویسندگان
چکیده
We present a novel statistical framework for analyzing transcription during cell development. In particular, we focus on data from mouse lymphoid lineages [1], which is part of blood cell development. Gene expression data of cells of several distinguishable developmental stages fosters the elucidation of the underlying molecular processes, which change gradually over time and lock cells in certain lineages. Large-scale analysis of this data requires a computational framework for tasks ranging from visualization, querying, and finding clusters of similar genes, to answering detailed questions about the functional roles of individual genes and their similarities and differences. In development, we have temporal sequences, in which one cell type undergoes a given differentiation process and turns into a new cell type. Furthermore, there can be branching points at which cells at particular developmental stages differentiate into two or more cell types, and subsequently follow different differentiation paths. To address the tree-like structure of these processes, we choose to represent mRNA expression data during cell development and differentiation with tree models [2], which model dependencies during differentiation, and to combine several of these models in a mixture. Together, we obtain a robust and flexible statistical model for analyzing and clustering genome-wide mRNA expression data sets, in which the inherent dependencies between stages can be seen and overlapping clusters are allowed. Additionally, we combine sequence information, as given by finding microRNA binding sites [3], and genes with similar expression profiles, as given by the clustering results, to perform a more detailed microRNA target prediction (see Figure 1).
منابع مشابه
Evaluation of Cell Penetrating Peptide Delivery System on HPV16E7 Expression in Three Types of Cell Line
Background: The poor permeability of the plasma and nuclear membranes to DNA plasmids are two major barriers for the development of these therapeutic molecules. Therefore, success in gene therapy approaches depends on the development of efficient and safe non-viral delivery systems. Objectives: The aim of this study was to investigate the in vitro delivery of plasmid DNA encoding HPV16 E7 gene...
متن کاملThe Difference in Initial Leukocyte Count, Bone Marrow Blast Cell Count and CD 34 Expression in Patients with Acute Myeloid Leukemia with and without NPM1 gene Mutation
Background: Mutation in NPM1 gene has been reported to be the most common genetic mutation in de novo acute myeloid leukemia (AML). AML with NPM1 gene mutation usually presents with higher initial leukocyte and blast cell counts and negative CD34 expression. We aimed to investigate the difference of initial leukocyte counts, bone marrow blast cell counts and expression of CD34 among patients wi...
متن کاملTHE EFFECT OF QUINACRINE ON THE EXPRESSION OF WNT3A GENE IN MDA-MB 231 AND MCF7 BREAST CANCER CELL LINES
Background & Aims: Triple-negative breast cancer cells refer to any breast cancer that does not express the genes for the estrogen, progesterone, and HER2 receptors. The Wnt signaling pathway is important in the development and progression of various types of cancers. Quinacrine, a derivative of 9-aminoacridine, has been shown to inhibit the growth of several types of cancer cells. In this stud...
متن کاملMir-183 and FOXO1 gene expression changes in peripheral blood mononuclear cells of breast cancer patients
Background and Aim: Today, cancer is considered as a major health problem and affects the health of society. Breast cancer is the second leading cause of cancer death in women after lung cancer. According to epidemiological studies, cancer is the second most common cause of death after cardiovascular disease worldwide and the third leading cause of death after cardiovascular disease and acciden...
متن کاملInvestigation of SMAD3 and SMAD4 genes expression in CML patients and K562 cell line and association with chronic myeloid leukemia
Aim and Background: Chronic myeloid leukemia (CML) is a clonal myeloproliferative disorder with cytogenetic characterization of the abnormal Philadelphia chromosome. This chromosome results from a reciprocal translocation between chromosomes 9 and 22. This is an important signaling pathway in the process of cancer cell proliferation and apoptosis, as well as the pathogenesis of TGF-β disease, i...
متن کاملEditing of the MALAT1 Gene in MDA-MB-361 Breast Cancer Cell Line using the Novel CRISPR Method
Introduction: Long non-coding RNAs play an important role in regulating gene expression, RNA processing, histone modification, and rearrangement of chromatin genes. These molecules can also be involved in many biological processes, such as organogenesis, cell differentiation, development, genome imprinting, quantitative compensation, and tumorigenesis. High expression of MALAT1 (a type of lncRN...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006